We compared 8,800 open source machine learning projects on GitHub and selected the Top 30 of them


Big Data Digest Works

编译:叶一、Shan LIU、Aileen

2017 was a year of machine learning applications in full bloom, with amazing ideas and projects popping up all over the place. We compared nearly 8,800 open source machine learning projects from the past year and selected the better 30 (Top 0.3%) of them to list here.

This is a highly competitive list of handpicked quality projects in the category of machine learning libraries, datasets and applications published in January-December 2017. We rated their quality by popularity, engagement, and timeliness. One statistic that will give you a visual impression of the quality of the form: the average number of GitHub stars for these projects is 3558.

开源项目对于数据科学家而言是很有意义的。你可以通过阅读源代码,在前人的基础上构建更加强大的项目。 You can have fun trying out these machine learning projects that may have missed you in the last year.

No.1 - FastText:快速文本表示/分类库

GitHub stars数: 11786个

来源:Facebook研究

链接:

https://github.com/facebookresearch/fastText

and [Muse: Multilingual unsupervised/supervised word embedding based on FastText (GitHub stars: 695) https://github.com/facebookresearch/MUSE]

No.2- Deep-photo-styletransfer:康奈尔大学 Fujun Luan 论文 Code and data for Deep Photo Style Transfer

GitHub stars数:9747个

链接:

https://github.com/luanfujun/deep-photo-styletransfer

No.3 - face recognition: The world's simplest facial recognition api for Pyhthon and the command line

Number of GitHub stars: 8672

来源:Adam Geitgey

Link:

https://github.com/ageitgey/face_recognition

No.4 - Magenta:机器智能音乐与艺术生成器

Number of GitHub stars: 8113

链接:

https://github.com/tensorflow/magenta

No.5 - Sonnet:基于 TensorFlow 的神经网络库

Number of GitHub stars: 5731

来源:DeepMind 成员 Malcolm Reynolds

链接:

https://github.com/deepmind/sonnet

No.6 - deeplearn.js:网页端硬件加速机器学习库

Number of GitHub stars: 5462

Source: Google Brain Team Nikhil Thorat

链接:

https://github.com/PAIR-code/deeplearnjs

No.7 - Fast Style Transfer: TensorFlow Fast Style Conversion

Number of GitHub stars: 4843

Source: Logan Engstrom, MIT

链接:

https://github.com/lengstrom/fast-style-transfer

No.8 - Pysc2: StarCraft II Learning Environment

Number of GitHub stars: 3683

Source: DeepMind Timo Ewalds et al.

链接:

https://github.com/deepmind/pysc2

No.9 - AirSim:微软AI和研究院出品的基于虚幻引擎的开源自动驾驶模拟器

Number of GitHub stars: 3681

Source: Microsoft's Shital Shah

链接:

https://github.com/Microsoft/AirSim

No.10 - Facets: Machine learning dataset visualization tools

Number of GitHub stars: 3371

来源:Google Brain

链接:

https://github.com/PAIR-code/facets

No.11 - Style2Paints: AI Manga Line Coloring Tool

Number of GitHub stars: 3310

链接:

https://github.com/lllyasviel/style2paints

No.12 - Tensor2Tensor:用于广义序列-序列模型的工具库

Number of GitHub stars: 3087

Source: Ryan Sepassi of Google Brain

链接:

https://github.com/tensorflow/tensor2tensor

No.13- PyTorch-based image-to-image conversion tool (e.g. horse2zebra, edges2cats, etc.)

Number of GitHub stars: 2847

Source: Dr. Junyan Zhu, UC Berkeley

链接:

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

No.14 - Faiss: A library of tools for efficient similarity retrieval and clustering with dense vectors

Number of GitHub stars: 2629

来源:Facebook

链接:

https://github.com/facebookresearch/faiss

No.15 Fashion-mnist: A MNIST-like dataset for fashion products

GitHub stars数:2780个

Source: Han Xiao of Zalando Tech

链接:

https://github.com/zalandoresearch/fashion-mnist

No.16 - ParlAI:适用于在各类公开的对话数据集上训练与评估AI模型的一个框架

Number of GitHub stars: 2578

Source: Alexander Miller of Facebook Research

链接:

https://github.com/facebookresearch/ParlAI

No.17 Fairseq:序列到序列工具包

GitHub stars数: 2571个

Source: FAIR

链接:

https://github.com/facebookresearch/fairseq

No.18 Pyro: Deep General Probabilistic Programming with Python and PyTorch

GitHub stars数: 2387个

来源:Uber AI Labs

Link:

https://github.com/uber/pyro

No.19 iGAN: GAN-based interactive image generator

Number of GitHub stars: 2369

链接:

https://github.com/junyanz/iGAN

No.20 Deep-image-prior: Image recovery using neural networks, yet without the learning process

GitHub stars数: 2188个

来源:Skoltech 的 Dmitry Ulyanov博士

链接:

https://github.com/DmitryUlyanov/deep-image-prior

No.21 Face_classification: Real-time facial detection and expression/gender classification based on Keras CNN models with OpenCV, trained with fer2013/imdb dataset

Number of GitHub stars: 1967

链接:

https://github.com/oarriaga/face_classification

No.22 Speech to Text WaveNet:使用 DeepMind 的 WaveNet 和 TensorFlow 构成的端到端句级英语语音识别

GitHub stars数: 1961个

Source: Namju Kim of Kakao Brain

链接:

https://github.com/buriburisuri/speech-to-text-wavenet

No.23 StarGAN: Unified generative adversarial networks for multi-domain image-to-image conversion

GitHub stars数: 1954个

Source: Yunjey Choi, Korea University

链接:

https://github.com/yunjey/StarGAN

No.24 MI-agents: Unity Machine Learning Intelligence Body

GitHub stars数: 1658个

Source: Arthur Juliani of Deep Learning Unity3D

链接:

https://github.com/Unity-Technologies/ml-agents

No.25 Deep Video Analytics:Distributed visual search and visual data analysis platform

GitHub stars数: 1494个

Source: Akshay Bhat, Cornell University

No.26 OpenNMT:Torch 上的开源神经机器翻译

Number of GitHub stars: 1,490

链接:

https://github.com/OpenNMT/OpenNMT

No.27 Pix2PixHD:使用条件 GAN 合成和处理 2048×1024 分辨率的图像

GitHub stars数:1283个

来源:英伟达 AI 科学家 Ming-Yu Liu

链接:

https://github.com/NVIDIA/pix2pixHD

No.28 Horovod:分布式 TensorFlow 训练框架

Number of GitHub stars: 1188

Source: Uber Engineering Team

链接:

https://github.com/uber/horovod

No.29 AI-Blocks: Powerful and intuitive WYSIWYG interface that allows anyone to create machine learning models

Number of GitHub stars: 899

链接:

https://github.com/MrNothing/AI-Blocks

No.30 Voice Conversion with Non-Parallel Data:基于 TensorFlow 的深度神经网络语音转换(语音风格转换)

Number of GitHub stars: 845

Source: Dabi Ahn, Kakao Brain AI Research Team

链接:

https://github.com/andabi/deep-voice-conversion

https://medium.mybridge.co/30-amazing-machine-learning-projects-for-the-past-year-v-2018-b853b8621ac7

[Machine Learning Concept of the Day]

Have a Great Definition

志愿者介绍

Reply "Volunteer" to join us


Recommended>>
1、Dare to be Software The Worlds First IoT EcoOperating System Enterprise
2、2018 what new trends will come out of Chinas artificial intelligence
3、Python stuff
4、The useful and interesting timestamp in blockchain you may not believe it its amazing
5、DeskBellChain creates the hotel ecosystem with blockchain and release is on the horizon

    已推荐到看一看 和朋友分享想法
    最多200字,当前共 发送

    已发送

    朋友将在看一看看到

    确定
    分享你的想法...
    取消

    分享想法到看一看

    确定
    最多200字,当前共

    发送中

    网络异常,请稍后重试

    微信扫一扫
    关注该公众号